
The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, 

searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments 

regarding this burden estimate or any other aspect of this collection of information, including suggesstions for reducing this burden, to Washington 

Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA, 22202-4302.  

Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any oenalty for failing to comply with a collection of 

information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

a. REPORT

The Role of Channel Distribution Information for Interference 

Management and Network Performance Enhancement

14.  ABSTRACT

16.  SECURITY CLASSIFICATION OF:

One of the key technologies proposed for next generation commercial and military communications systems is the 

use of multiple antennas at both the transmitting and receiving nodes of the network.  The additional antenna 

elements provide degrees of freedom that can provide spatial filtering, spatial multiplexing and diversity gain. 

These advances can be applied to increase link gain, provide interference management, mitigate hostile jammers 

and facilitate multi-packet reception. 

1. REPORT DATE (DD-MM-YYYY)

4.  TITLE AND SUBTITLE

03-11-2010

13.  SUPPLEMENTARY NOTES

The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department 

of the Army position, policy or decision, unless so designated by other documentation.

12. DISTRIBUTION AVAILIBILITY STATEMENT

Approved for Public Release; Distribution Unlimited

UU

9.  SPONSORING/MONITORING AGENCY NAME(S) AND 

ADDRESS(ES)

6. AUTHORS

7.  PERFORMING ORGANIZATION NAMES AND ADDRESSES

U.S. Army Research Office 

 P.O. Box 12211 

 Research Triangle Park, NC 27709-2211

15.  SUBJECT TERMS

channel statistics, interference management, covariance feedback, beamformers,multiuser MIMO, outage probability,  network 

scheduling

James R. Zeidler, Sagnik Ghosh

University of California - San Diego

9500 Gilman Drive

MC 0934

La Jolla, CA 92093 -0934

REPORT DOCUMENTATION PAGE

b. ABSTRACT

UU

c. THIS PAGE

UU

2. REPORT TYPE

Final Report

17.  LIMITATION OF 

ABSTRACT

UU

15.  NUMBER 

OF PAGES

5d.  PROJECT NUMBER

5e.  TASK NUMBER

5f.  WORK UNIT NUMBER

5c.  PROGRAM ELEMENT NUMBER

5b.  GRANT NUMBER

5a.  CONTRACT NUMBER

W911NF-09-1-0494

611102

Form Approved OMB NO. 0704-0188

57328-NS-II.2

11.  SPONSOR/MONITOR'S REPORT 

NUMBER(S)

10.  SPONSOR/MONITOR'S ACRONYM(S)

    ARO

8.  PERFORMING ORGANIZATION REPORT 

NUMBER

19a.  NAME OF RESPONSIBLE PERSON

19b.  TELEPHONE NUMBER

James Zeidler

858-534-5369

3. DATES COVERED (From - To)

15-Sep-2009

Standard Form 298 (Rev 8/98) 

Prescribed by ANSI  Std. Z39.18

- 14-Jun-2010



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
2010 

2. REPORT TYPE 
N/A 

3. DATES COVERED 
  -   

4. TITLE AND SUBTITLE 
Outage-Efficient Strategies for Multiuser MIMO Networks with Channel
Distribution Information 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
University of California - San Diego 9500 Gilman Drive MC 0934 La
Jolla, CA 92093 -0934 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release, distribution unlimited 

13. SUPPLEMENTARY NOTES 
The original document contains color images. 

14. ABSTRACT 
In this work, we examine single user and multiuser Multiple-Input Multiple-Output (MIMO) beamforming
networks with Channel Distribution Information (CDI). Since CDI changes infrequently compared to
Channel State Information (CSI), algorithms based on CDI can achieve significant savings in feedback
compared to algorithms based on CSI. With CDI, we can only guarantee quality of service for a specified
outage probability in the network. Assuming correlated Rayleigh fading on all the links, we derive a
closed-form expression for the outage probability. Then, using this expression, we derive algorithms for
joint transmit/receive beamforming and power control to minimize the weighted sum power in the network
while guaranteeing these outage probabilities. For both singleuser and multiuser MIMO scenarios, we
present optimal algorithms under the Kronecker model assumption, and we present near-optimal
algorithms assuming general correlation structures on the links. We then show that using these algorithms
based on CDI, if we are willing to accept given outages on the links, we can achieve comparable power
usage in the network relative to algorithms based on CSI. 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 

SAR 

18. NUMBER
OF PAGES 

21 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



The Role of Channel Distribution Information for Interference Management and Network Performance Enhancement

Report Title

ABSTRACT

One of the key technologies proposed for next generation commercial and military communications systems is the use of multiple antennas 

at both the transmitting and receiving nodes of the network.  The additional antenna elements provide degrees of freedom that can provide 

spatial filtering, spatial multiplexing and diversity gain. These advances can be applied to increase link gain, provide interference 

management, mitigate hostile jammers and facilitate multi-packet reception. 

In this project we defined how the the channel statistics can be utilized in place of the instantaneous channel state informaton to limit the 

amount of power that must be transmitted between nodes to improve overall network performance by maintaining stable beamforming 

vectors over the time scales defined by channel distribution information rather than the reduced time scale associated with the channel 

coherence time. 

With CDI, one can only guarantee quality of service for a specified outage probability. This creates a tradeoff that can be beneficial to the 

overall network. Closed form expressions for the outage probabilities were derived and given those expressions, algorithms were derived 

that minimize the weighted sum power in the network for a specified outage probability.

(a) Papers published in peer-reviewed journals (N/A for none)

Sagnik Ghosh, Bhasker D. Rao, and James .R. Zeidler, “Outage Efficient Strategies for Multiuser MIMO Networks with Channel 

Distribution Information”, IEEE Transactions on Signal Processing, December 2010   in press.

List of papers submitted or published that acknowledge ARO support during this reporting 

period.  List the papers, including journal references, in the following categories:

(b) Papers published in non-peer-reviewed journals or in conference proceedings (N/A for none)

 1.00Number of Papers published in peer-reviewed journals:

Number of Papers published in non peer-reviewed journals:

(c) Presentations

 0.00

Number of Presentations:  0.00

Non Peer-Reviewed Conference Proceeding publications (other than abstracts):

Number of Non Peer-Reviewed Conference Proceeding publications (other than abstracts):  0

Peer-Reviewed Conference Proceeding publications (other than abstracts): 

SS Tan, A. Anderson and J.R. Zeidler, “The Role of Channel Distribution Information in the Cross-layer Design of an Opportunistic 

Scheduler for MIMO Networks” IEEE Asilomar Conference, November 2010 (finalist for best student paper award)

S. Ghosh, B.R. Rao, and J. R. Zeidler, ``Outage-optimal transmission in multiuser-mimo kronecker channels,'' in Proc. 2010 IEEE Intl. Conf. 

Acoustics, Speech, and Signal Processing, San Diego, March 2010.

(d) Manuscripts

Number of Peer-Reviewed Conference Proceeding publications (other than abstracts):  2

Number of Manuscripts:  0.00



Patents Submitted

Patents Awarded

Awards

Finalist Best Student Paper Award, IEEE Asilomar Conference, Pacific Grove, CA November 2010

Graduate Students

PERCENT_SUPPORTEDNAME

Sagnik Ghosh  0.40

 0.40FTE Equivalent:

 1Total Number:

Names of Post Doctorates

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:

Names of Faculty Supported

National Academy MemberPERCENT_SUPPORTEDNAME

James Zeidler  0.20 No

 0.20FTE Equivalent:

 1Total Number:

Names of Under Graduate students supported

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:



The number of undergraduates funded by this agreement who graduated during this period with a degree in 

science, mathematics, engineering, or technology fields:

The number of undergraduates funded by your agreement who graduated during this period and will continue 

to pursue a graduate or Ph.D. degree in science, mathematics, engineering, or technology fields:

Number of graduating undergraduates who achieved a 3.5 GPA to 4.0 (4.0 max scale):

Number of graduating undergraduates funded by a DoD funded Center of Excellence grant for 

Education, Research and Engineering:

The number of undergraduates funded by your agreement who graduated during this period and intend to 

work for the Department of Defense

The number of undergraduates funded by your agreement who graduated during this period and will receive 

scholarships or fellowships for further studies in science, mathematics, engineering or technology fields:

 0.00

 0.00

 0.00

 0.00

 0.00

 0.00

......

......

......

......

......

......

Student Metrics
This section only applies to graduating undergraduates supported by this agreement in this reporting period

The number of undergraduates funded by this agreement who graduated during this period:  0.00......

Names of Personnel receiving masters degrees

NAME

Total Number:

Names of personnel receiving PHDs

NAME

Total Number:

Names of other research staff

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:

Sub Contractors (DD882)

Inventions (DD882)





1

Outage-Efficient Strategies for Multiuser
MIMO Networks with Channel Distribution

Information
Sagnik Ghosh*, Bhaskar D. Rao, and James R. Zeidler

s1ghosh@ucsd.edu, brao@ece.ucsd.edu, zeidler@ece.ucsd.edu
Department of Electrical and Computer Engineering

University of California, San Diego
9500 Gilman Dr., MC 0407
La Jolla, CA 92093-0407

Abstract— In this work, we examine single user and mul-
tiuser Multiple-Input Multiple-Output (MIMO) beamform-
ing networks with Channel Distribution Information (CDI).
Since CDI changes infrequently compared to Channel State
Information (CSI), algorithms based on CDI can achieve
significant savings in feedback compared to algorithms
based on CSI. With CDI, we can only guarantee quality of
service for a specified outage probability in the network.
Assuming correlated Rayleigh fading on all the links, we
derive a closed-form expression for the outage probability.
Then, using this expression, we derive algorithms for
joint transmit/receive beamforming and power control to
minimize the weighted sum power in the network while
guaranteeing these outage probabilities. For both single-
user and multiuser MIMO scenarios, we present optimal
algorithms under the Kronecker model assumption, and we
present near-optimal algorithms assuming general correla-
tion structures on the links. We then show that using these
algorithms based on CDI, if we are willing to accept given
outages on the links, we can achieve comparable power
usage in the network relative to algorithms based on CSI.

Index Terms— covariance feedback, beamformers, mul-
tiuser MIMO, outage probability, Channel State Infor-
mation, Channel Distribution Information; EDICS: MSP-
CAPC, MSP-MULT, WIN-ADHC, WIN-PHYL

I. INTRODUCTION

Multiuser multiple-input multiple-output (MU-
MIMO) networks have generated much research interest
in recent years. As the community has come to have
a greater understanding of MIMO point-to-point links,
recent work has involved looking at how multiple
antennas can be utilized to reduce interference in
multiuser scenarios. Some useful surveys and texts on
the topic are [1]-[4]. To achieve maximum throughput
and reliability in the MU-MIMO network, all the nodes

This work was sponsored by the U. S. Army Research Office under
the Multi-University Research Initiative (MURI) Grant # W911NF-04-
1-0224 and the USARAC Grant # W911NF-09-1-0494.

need to have perfect Channel State Information (CSI)
of all the links in the network. With this knowledge,
utilizing intelligent beamforming, interference in the
system can be minimized and optimal rates can be
achieved.

This assumption may be feasible in small networks
where the channels change slowly. The nodes then have
time to estimate their channel and feed back their CSI
to the rest of the nodes before transmitting their data.
However, in reality, many networks are large, mobile,
and operate in dynamic environments. Thus, the channels
change too fast for the CSI to be fed back to all the
nodes–by the time all the CSI has reached every node,
the information is already outdated. Thus, much work
has focused on finding transmission schemes that do
not rely on full CSI. The simplest transmission scheme
assumes no knowledge about the channel structure and
employs equal power allocation on all the antennas [1].
This approach has the advantage of having no feedback
overhead, but yields lower throughput and gives no
insight into the transmit power required for reliable
multiuser communication as compared to schemes that
utilize feedback. Another transmission scheme uses lim-
ited CSI, where nodes feed back their CSI only to
nearby nodes [7]. This approach assumes that the nearby
nodes dominate the interference, and should therefore
yield near-optimal performance. However, even in point-
to-point systems, very low channel coherence times
make full CSI feedback infeasible. Many schemes thus
utilize quantized forms of CSI to reduce feedback [5][6].
Still, these approaches suffer from having to feed back
information every time the channel changes.

Another approach, then, is to utilize the channel
statistics, or Channel Distribution Information (CDI),
to enhance communication. Since it takes into account
the randomness in the channel, CDI is more robust to
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small channel coherence times and is thus valid for much
longer than CSI. In addition, given the trend towards
more location-based services, statistical data based on
node location can also be collected and stored a priori.
Such location-based data eliminates the need for real-
time channel feedback. CDI has been combined with
various CSI schemes to improve performance and reduce
feedback in [8]-[10]. In [8], CDI is used to aid in SINR
feedback, and in [10], CDI is used in combination with
channel norm feedback to exploit multiuser diversity.
In [9], CDI is utilized for more efficient beamformer
codebook design. While these schemes use CDI to
reduce CSI feedback, channel information must still be
fed back every time the channel changes. Thus, much
previous work has focused on utilizing CDI without the
aid of CSI.

Previous work using only CDI focuses on maximizing
ergodic capacity. In [11], optimal transmission strategies
are given for single-user multiple-input single-output
(SU-MISO) channels when either the mean channel
information or covariance channel information is known.
The capacity-optimal input covariance for the single-user
MIMO (SU-MIMO) channel with mean and covariance
channel information is presented in [12]. This result is
extended to the MIMO multiple access channel in [13].
Suboptimal solutions for the MIMO broadcast channel
are given in [14]. These works focus on average capacity,
but this metric relies on averaging over good and bad
channels to achieve the desired throughput. Thus, packet
delay is ignored in such schemes, and average capacity
analysis is not applicable to delay-sensitive applications.

This work seeks to account for this delay problem
by looking at the outage of the links in the network.
Due to the randomness in the channel, reliable trans-
mission cannot be achieved all the time using just
CDI. Consequently, in this work we guarantee a cer-
tain signal-to-interference-plus-noise ratio (SINR) with
a specified probability on all the links. Specifically,
this work looks to jointly optimize the power alloca-
tion and transmit/receive beamformers to minimize the
power used in the network while meeting these outage
SINR constraints. While many works in the literature
assume the channels experience independent identically-
distributed (i.i.d.) Rayleigh fading across the transmit
and receive antennas for analytic convenience, much
work has been done showing the insufficiency of this
model [15]-[18]. Therefore, this work assumes all links
in the network experience correlated Rayleigh fading.
Under this assumption, the expression for the outage
probability on each link is derived. This expression is
then applied to the SU-MIMO channel, and an algorithm
for joint transmit and receive beamforming and power
control is presented. We then study the MU-MIMO

system, where algorithms for joint transmit and receive
beamforming and power control are discussed. Under the
Kronecker model assumption [15], an optimal algorithm
is given, and for general correlation structures a close-
to-optimal algorithm is derived. Then, using the derived
CDI algorithms, we show that while we accept some
loss on the links in the network, we can achieve power
consumption levels attained by CSI schemes.

The paper is organized as follows: in Section II, the
problem formulation is given and discussed, and the
expression for outage probability is derived. Section III
discusses the SU-MIMO problem. Section III-A finds
the closed-form expression for the optimal power control
for a fixed set of beamformers. Section III-B derives the
optimal beamformers for the Kronecker model, and III-
C derives an algorithm for beamforming under general
Rayleigh fading. Section IV discusses the MU-MIMO
problem. First, IV-A derives an optimal power control
algorithm with a fixed set of beamformers. Section IV-B
then derives the optimal beamformers for the Kronecker
model, and Section IV-C discusses a good suboptimal
solution for the beamformers assuming general Rayleigh
fading. We compare our derived CDI algorithms to CSI
algorithms in Section V, and we summarize our results
in Section VI.

In this work, the following notation is used: italicized
letters indicate scalars (e.g. pl), lower-case bold letters
indicate vectors (e.g. v), and upper-case bold letters
indicate matrices (e.g. A). Furthermore, (•)H indicates
the Hermitian operator, and (•)∗ indicates the conjugate
operator.

II. PROBLEM FORMULATION

A. System Model

This work considers time-varying MIMO channels for
many users in a network. Consider a MIMO network
with L transmit-receive pairs. At link l, the transmitter
sends the symbol sl(t) to the receiver. The transmitter
uses unit-norm beamforming vector vl(t) to precode the
signal, and transmits with power pl(t). The receiver em-
ploys the linear unit-norm beamformer ul(t) to combine
the signal. The channel from transmitter i to receiver l
is given by Hli(t). The noise Nl(t) is distributed as a
complex circular Gaussian, and represents the combined
noise after applying the receive beamforming vector to
the incoming signal. The lth received signal is thus given
by

rl(t) =
√
pl(t)[u

H
l (t)Hll(t)vl(t)]sl(t) +Nl(t)

+

L∑
i 6=l

√
pi(t)[u

H
l (t)Hli(t)vi(t)]si(t)
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In schemes that use perfect CSI, a block-fading model
is assumed, so the channel stays constant over each
block. Then, for notational convenience, the time vari-
able will be dropped for the channel, power allocations,
and beamformers. To further simplify notation, define
Gli = |uHl Hlivi|2 as the beamforming channel gain
from the transmitter on link i to the receiver at link l
and σ2

Nl
as the noise power for the lth link. Then, under

this model, the SINR Γl on each link can be shown to
be

Γl =
plGll∑

i 6=l piGli + σ2
Nl

(1)

If perfect CSI is available, to ensure a reliable link
is available to all nodes in the network, each link has
an SINR constraint: Γl must be greater than a threshold
γl. The goal is then to minimize the power consumed by
the network while meeting all the SINR constraints. The
cost function considered in this work is the weighted sum
power. In this setup, each link l in the network incurs
some cost wl > 0 to transmit across its link. An example
of a network with varying power costs on the links are
networks with varying battery life at the transmitters.
For minimizing non-weighted sum power, wl = 1 for
l = 1, . . . , L.

To compact notation, define the weighting and power
vectors as w = {w1, . . . , wL} and p = {p1, . . . , pL},
respectively. The beamforming matrices are defined as
U = {u1, . . . ,uL} and V = {v1, . . . ,vL}. The op-
timization problem for having perfect CSI, formulated
and discussed in [7], can then be stated as follows:

min
p≥0,U,V

wTp

s.t. Γl ≥ γl,l = 1, . . . , L (2)

For a fixed set of channel matrices Hli’s, this problem
can be solved and will give a set of power allocations
and beamformers for the transmitters and receivers in
the network. Then, for every change in the Hli’s, all the
transmit and receive beamformers must be updated, and
the power allocation scheme changes. In many networks,
the feedback required for these changes in the channel
is unrealistic due to rapidly-varying CSI. Thus, this
work considers a network where instantenous CSI is
unavailable, but CDI is available. When only CDI is
known, the exact Hli’s are not known–instead, they are
assumed to be a random variable drawn from a complex-
normal distribution:

vec(Hli) ∼ CN(0,Σli)

The channel covariance matrices, given by the Σ′lis,
comprise the CDI of the network. This work will con-

sider the case where the channel varies, but the statistics
stay constant. Under this model, the expression for SINR
given in (1) becomes a random variable since it depends
on the channel. The constraints in (2) can then no longer
be written as the SINR on link l always exceeding some
threshold γl–since the SINR is now random, it will
drop below γl with some probability. Therefore, these
absolute constraints change to outage constraints, and
links are allowed to have an SINR below their thresholds
for specified probabilities. Mathematically, the constraint
on link l in (2) becomes Pr(Γl ≤ γl) ≤ αl, where αl
is the probability that the link is in outage. The main
optimization problem using CDI can then be formulated:

min
p≥0,U,V

wTp

s.t. Pr(Γl ≤ γl) ≤ αl, l = 1, . . . , L (3)

In this formulation, the constraints ensure that the lth

link will be active with probability (1−αl). In order to
solve this optimization problem, the first step is to derive
a closed-form expression for the outage probability,
Pr(Γl ≤ γl).

B. Derivation of Outage Probability

Two steps are used in deriving this closed-form ex-
pression of the outage probability. The first is to express
Γl as a ratio of an exponential random variable to a
weighted sum of exponential random variables plus some
constant. The second step is to express Pr(Γl ≤ γl) in
terms of the moment-generating function for a sum of
weighted exponential random variables to obtain the final
result.

Without loss of generality, the expression for outage
probability of the first user will be shown (treating
all other users as interference). Furthermore, for con-
venience, the user subscript l will be dropped (G11

becomes G1, σ2
Nl

becomes σ2
N and so on). Thus, the

expression for SINR being considered is

Γ =
p1G1∑

i 6=1 piGi + σ2
N

(4)

The following Lemma will also be used in the proof of
the theorem:

Lemma 1: If u and v are unit-norm vectors and
H is complex circular Gaussian matrix distributed as
vec(H) ∼ CN(0,Σ), then

|uHHv|2

(v∗ ⊗ u)HΣ(v∗ ⊗ u)
∼ χ2

2 (5)

The proof is given in Appendix I. The theorem can then
be stated as follows:
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Theorem 1: In a MU-MIMO network where all links
experience correlated Rayleigh fading and the transmit-
ter and receiver both employ linear beamforming, the
expression for outage probability for the SINR for user
1 is given by

ρout = Pr(Γ ≤ γ) = 1− e−
γ
2

σ2N
c1p1

L∏
i=2

(
1 + γ

cipi
c1p1

)−1
,

(6)
where

ci = (v∗i ⊗ u1)HΣi(v
∗
i ⊗ u1)

Proof: Step 1: Get ρout into the following form:

ρout = Pr(Γ ≤ γ) = Pr(
X

Y + σ2
≤ γ), (7)

where X is an exponential random variable and Y
is a weighted sum of independent exponential random
variables. Applying Lemma 1 to the Gl terms in the
expression for Γ in Eqn. (4) gives

Γ =
c1p1Z1∑L

i=2 cipiZi + σ2
N

, (8)

Zi ∼ χ2
2, Z

′
is i.i.d.

Then, dividing the top and bottom of the right hand side
of Eqn. (8) by c1p1 gives

Γ =
X

Y + σ2
,

where X = Z1, Y =
∑L
i=2 kiZi, ki = cipi

c1p1
, and σ2 =

σ2
N

c1p1
. With these substitutions, ρout has the desired form

of Eqn. (7). This concludes Step 1.
Step 2: This step expresses ρout in terms of the

moment-generating function of Y to obtain the final
result. The analysis here uses techniques similar to work
done in [19],[20]. Consider

ρout = Pr(
X

Y + σ2
≤ γ) = Pr(X ≤ γ(Y + σ2))

=

∫ ∞
0

Pr(X ≤ γ(y + σ2))fY (y) dy (9)

Here, observe that Pr(X ≤ γ(y+σ2)) is the cumulative
distribution function (CDF) of the exponential distribu-
tion (λ = 1

2 ) evaluated at γ(y + σ2), which gives

Pr(X ≤ γ(y + σ2)) = 1− e−
γ
2 (y+σ

2)

Substituting this expression into Eqn. (9) yields

ρout =

∫ ∞
0

(1− e−
γ
2 (y+σ

2))fY (y) dy

= 1− e−
γ
2 σ

2

∫ ∞
0

e−
γ
2 yfY (y) dy (10)

Here, the key observation is that the expression in the
integral in Eqn. (10) is the moment-generating function
of Y , denoted ψY (t), evaluated at −γ2 . Since Y is a sum
of independent random variables, the moment-generating
function of Y is the product of the moment-generating
functions of each element in the sum. The moment-
generating function of an exponential random variable
is given as

ψZi(t) = E[etZi ] = (1− 2t)−1

The moment-generating function of Y is then given as

ψY (t) = E[etY ] = E[et
∑L
i=2 kiZi ] =

L∏
i=2

E[etkiZi ]

=

L∏
i=2

ψZi(kit) =

L∏
i=2

(1− 2kit)
−1

Then, evaluating ψY (t) at t = −γ2 , substituting the result
into Eqn. (10), and substituting cipi

c1p1
= ki gives the

result:

ρout = 1− e−
γ
2 σ

2
L∏
i=2

(
1 + γ

cipi
c1p1

)−1

C. Observations on the Optimization Problem

Using the expression for outage probability above and

substituting σl =
σ2
Nl

cllpl
, the optimization problem in (3)

can be written as

min
p≥0,U,V

wTp

s.t. 1− e−
γl
2

σ2Nl
cllpl

∏
i 6=l

(
1 + γl

clipi
cllpl

)−1
≤ αl, l = 1, . . . , L

(11)

To get the constraints in (11) into a more convenient
form, define

gl(γl,p,ul,V) = e
γl
2

σ2Nl
cllpl

∏
i 6=l

(
1 + γl

clipi
cllpl

)
βl = (1− αl)−1
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Then, with some manipulation on the constraints, (11)
can be rewritten as

min
p≥0,U,V

wTp

s.t. gl(γl,p,ul,V) ≤ βl, l = 1, . . . , L (12)

The form presented in (12) will serve as the main
optimization problem used for analysis in the rest of
this work. To gain more insight into this problem, two
lemmas are given that will aid in the algorithms and
manipulations for future sections. These lemmas are
extensions of the work in [7] to this problem. The proofs
are given in Appendix I.

Lemma 2: Holding the beamformers U and V con-
stant, the optimization problem in (12) has the following
3 properties:

1) If it exists, the optimum solution p∗ is unique.
2) All the outage constraints are active (i.e. hold with

equality) for p = p∗.
3) p∗ is unaffected by the choice of w.
Intuitively, all the constraints are active since if any

of them held with strict inequality, the objective func-
tion could be reduced by making the constraint hold
with equality. Also, since all the constraints hold with
equality, there are L equations (the constraints) and
L unknowns (the pl’s). Thus, the constraints uniquely
determine the optimal solution p∗, and so the weighting
vector has no effect on the solution. It follows from
Lemma 2 that for fixed transmit and receive beam-
formers, solving the constraints with equality will yield
the optimal power allocation scheme, and the objective
function in (12) can be ignored. The next related Lemma,
analogous to [7], will aid in gaining insight into subop-
timal solutions in Section IV-C.

Lemma 3: Consider the following optimization prob-
lem:

max
p≥0,U,V

wTp

s.t. gl(γl,p,ul,V) ≥ βl, l = 1, . . . , L (13)

This problem has the same solution as the optimization
problem in (12).

Intuitively, the optimization problem in (13) is the
same as the problem in (12) since once again, all the
constraints will be active, so the constraints uniquely
determine p∗.

This foundation aids in the development of algorithms
to find solutions for the optimization problem in (12).
First, the simpler single user MIMO problem is consid-
ered.

III. THE SINGLE USER MIMO PROBLEM

A. Optimal Power Control

Despite the rich literature in single user MIMO, the
problem where both the transmitter and receiver only
know statistical information about the channel and want
to achieve a certain SINR threshold with some prob-
ability has not, to our knowledge, been studied. Here,
there is no interference in the system, and the weighted
cost function does not apply since the problem requires
minimizing over one variable. Thus, the optimization
problem for this special case is as follows:

min
P≥0,u,v

P

s.t. exp

(
γσ2

N

2P (v∗ ⊗ u)HΣ(v∗ ⊗ u)

)
≤ β (14)

Although there are no interference terms, it can be seen
that the proof for Lemma 2 holds, so the constraint in
(14) is satisfied by equality. Solving the constraint for P
gives

P =
γσ2

N

2(v∗ ⊗ u)HΣ(v∗ ⊗ u) log β
(15)

The main challenge in this problem is then to find the
optimal beamformers u and v. From Eqn. (15), it can be
seen that P will be minimized when (v∗⊗u)HΣ(v∗⊗u)
is maximized. Thus, the following optimization problem
follows:

max
u,v

(v∗ ⊗ u)HΣ(v∗ ⊗ u)

s.t. ||u||2 = 1, ||v||2 = 1 (16)

Solving for the beamformers in (16) is equivalent to
solving for the beamformers in (14). First, the Kronecker
model will be considered, where a closed-form solution
can be obtained. Then, the general correlated Rayleigh
fading case is considered, where an iterative algorithm
to find the beamformers is derived.

B. Optimal Beamforming for the Kronecker Model

The Kronecker model assumes that the spatial covari-
ance matrix can be broken into the spatial correlation at
each link end, so the covariance matrix is given as

Σ = ΣT
T ⊗ΣR (17)

This model is widely used, and its validity is discussed
and verified in [15][23][24]. To obtain the beamforming
optimization problem for the Kronecker model, substi-
tute the expression for Σ given in Eqn. (17) into (16).
The objective function in (16) then becomes
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(v∗ ⊗ u)HΣ(v∗ ⊗ u) = (v∗ ⊗ u)H(ΣT
T ⊗ΣR)(v∗ ⊗ u)

=(vTΣT
Tv∗)(uHΣRu) = (vHΣTv)(uHΣRu)

The second equality follows from the property of Kro-
necker products that states

(A⊗B)(C⊗D) = (AC⊗BD), (18)

and the last equality follows from aT = a, where a is a
scalar (so vTΣT

Tv∗ = (vTΣT
Tv∗)T = vHΣTv). With

these manipulations, the maximization problem in (16)
then becomes

max
u,v

(vHΣTv)(uHΣRu)

s.t. ||u||2 = 1, ||v||2 = 1 (19)

Note that u and v are now separated, so two separate
maximization problems arise whose solutions are well
known: u is the (normalized) eigenvector that corre-
sponds to the largest eigenvalue of ΣR, and v is the
(normalized) eigenvector that corresponds to the largest
eigenvalue of ΣT . It is worth noting that if ΣT and ΣR

are set to the identity matrices of appropriate dimension,
then Σ = I and the problem simplifies to the special case
of i.i.d. Rayleigh fading. In this case, any set of transmit
and receive beamformers are optimal, since all vectors
are eigenvectors of I, and the eigenvalues are all 1.

After they are calculated, the solutions for u and v can
be substituted back into the constraint of (14) to solve
for P . Define λ(1)T and λ(1)R as the largest eigenvalues of
ΣT and ΣR, respectively. Then Popt is given by

Popt =
γσ2

N

2λ
(1)
T λ

(1)
R log β

(20)

C. Beamforming for General Rayleigh Fading

Now consider the general Rayleigh fading case. Using
the property of Kronecker products given in Eqn. (18),
observe that

v∗ ⊗ u = (v∗ ⊗ INR)(1⊗ u) = (v∗ ⊗ INR)u (21)
v∗ ⊗ u = (INT ⊗ u)(v∗ ⊗ 1) = (INT ⊗ u)v∗ (22)

Then, define

Σv = (v∗ ⊗ INR)HΣ(v∗ ⊗ INR)

Σu = (INT ⊗ u)HΣ(INT ⊗ u)

From Eqns. (21) and (22), it follows that

(v∗ ⊗ u)HΣ(v∗ ⊗ u) = vTΣuv∗ = uHΣvu

It can be shown that Σu and Σv are positive semidef-
inite matrices since for a positive semidefinite matrix
Σ, AHΣA is also positive semidefinite [25]. Now, Σu

can be used to solve for the optimal transmit beam-
former for a fixed receive beamformer, and Σv can be
used to solve for the optimal receive beamformer for
a fixed transmit beamformer. In this way, an iterative
algorithm can be derived to obtain both the transmit
and receive beamformers. First, if v is fixed such that
Σv � 0, with at least 1 nonzero eigenvalue (random
initialization should suffice), the optimal solution for
u will be the eigenvector corresponding to the largest
eigenvalue of Σv. Then, if u is then fixed, the optimal
solution for v will be the complex conjugate of the
eigenvector corresponding to the largest eigenvalue of
Σu. This algorithm can alternately solve for u while
fixing v and then solve for v while fixing u. The
optimization problem in (16) is not jointly convex in
u and v, so this algorithm will converge monotonically
to a locally optimal solution. To initialize the algorithm,
the Kronecker model approximation can be used on the
covariance matrix, and the optimal beamformers from
this approximation can be used. While this solution is
not proven to be globally optimal, it is shown in Section
V to perform well.

Once the algorithm to obtain the transmit and receive
beamformers is applied, a solution for P can be obtained
using Eqn. (15):

Popt =
γσ2

N

2(v∗opt ⊗ uopt)HΣ(v∗opt ⊗ uopt) log β
(23)

IV. THE MULTIUSER MIMO PROBLEM

A. Optimal Power Control

Now return to the multiuser problem in Eqn. (12).
This problem is more difficult to solve than the single-
user case due to interference from other users. In order
to make the problem tractable, first examine the problem
when both the transmit and receive beamformers are
fixed. With this assumption, a power control algorithm
solving the constraint equations in (12) with equality is
derived. Algorithms for the beamformers are then studied
in the following sections.

To derive an optimal power control algorithm, start by
taking the logarithm of the constraint equations in (12):
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log(gl(γl,p,ul,V)) = log

e γl2 σ2Nl
cllpl

∏
i 6=l

(
1 + γl

clipi
cllpl

)
=
γlσ

2
Nl

2cllpl
+
∑
i 6=l

log

(
1 + γl

clipi
cllpl

)
≤ log βl

Multiplying both sides by pl
log βl

results in

γlσ
2
Nl

2cll log βl
+

pl
log βl

∑
i6=l

log

(
1 + γl

clipi
cllpl

)
≤ pl (24)

Now define

Il(p) =
γlσ

2
Nl

2cll log βl
+

pl
log βl

∑
i6=l

log

(
1 + γl

clipi
cllpl

)
I(p) = [I1(p), . . . , IL(p)]

The function I(p) is a standard interference function.
For the definition of standard interference functions and
the proof, see Appendix II. A key property of standard
interference functions is that they satisfy I(p) ≤ p.
Thus, using this function and a starting power vector
p, the update equation for the algorithm is given as:

p(n+1) = I(p(n)) (25)

The algorithm is then given as follows:
Algorithm 1: Power Control
1) Initialize p ≥ 0, U, and V
2) Update p using (25) until convergence.

This algorithm will be used jointly with beamforming
algorithms in future sections to obtain the optimal power
allocation for a given set beamformers.

B. Optimal Beamforming for the Kronecker Model

While for general Rayleigh fading the optimal transmit
and receive beamformers are difficult to obtain, the
problem in (12) can be solved if the Kronecker model is
assumed on all the links. The Kronecker model assumes
the transmit and receive correlations are independent
at the link ends. This implies that each transmitter
has its own transmit correlation matrix, regardless of
the receiver, and each receiver has its own receive
correlation matrix, regardless of the transmitter. Thus,
the channel from transmitter i to receiver l is given as:

vec(Hli) ∼ CN(0,ΣT
Ti ⊗ΣRl)

This assumption has some interesting implications.
Note that now, for the Kronecker model, the link gain
between receiver l and transmitter i is given by

cli = (v∗i ⊗ ul)
H(ΣT

Ti ⊗ΣRl)(v
∗
i ⊗ ul)

= (vTi ΣT
Tiv
∗
i )(u

H
l ΣRlul) = (vHi ΣTivi)(u

H
l ΣRlul)

The last equality follows from aT = a, where a is a
scalar (as in the single-user case above). The constraint
equations in (12) then become

exp

(
γl
2

σ2
Nl

(vlΣTlvl)(u
H
l ΣRlul)pl

)
×

∏
i 6=l

(
1 + γl

(viΣTivi)pi
(vlΣTlvl)pl

)
≤ βl, l = 1, . . . , L (26)

First, focus on the receive beamformers. The important
observation here is that ul only appears in the exponen-
tial noise term in the product in Eqn. (26), and cancels
out in the other product terms, which affect the interfer-
ence. Therefore, the receive beamforming only helps to
mitigate the noise, and not the interference. With respect
to the receive beamforming, then, this case is exactly
analogous to the single user MIMO case, and the optimal
ul is given by the normalized eigenvector corresponding
to the largest eigenvalue of ΣRl , l = 1, . . . , L. From this
solution, note that uHloptΣRlulopt = λ

(1)
Rl

, where λ(1)Rl is
the maximum eigenvalue of ΣRl .

For the optimal transmit beamformers, define ql =
(vHl ΣTlvl)pl, l = 1, . . . , L. By noting that pl =

ql
(vHl ΣTl

vl)
, assuming the Kronecker model, the following

equivalent optimization problem to (12) is presented:

min
q≥0,U,V

L∑
l=1

wlql
(vHl ΣTlvl)

s.t. exp

(
γlσ

2
Nl

2λ
(1)
Rl
ql

)∏
i6=l

(
1 + γl

qi
ql

)
≤ βl, l = 1, . . . , L

(27)

In the optimization problem in (27), the vl’s only appear
in the optimization function, and not in the constraints.
To minimize the objective function in (27), then, the
denominator terms should be maximized. Once again,
this optimization problem is analogous to the single-user
case, and the optimal vl’s are given by the normalized
eigenvectors corresponding to the maximum eigenvalues
of the ΣTl ’s. Since the problem in (27) is equivalent to
the problem in (12) for the Kronecker model, the optimal
transmit beamformers will be the same as well.

For the special case of i.i.d. Rayleigh fading on all
the links, e.g. when Σli = I ∀l, i, it follows from this
solution that any set of transmit and receive beamformers
is optimal, using the same arguments as the single-user
case. After substituting the optimal transmit and receive
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beamformers into (12), Algorithm 1 can be run to solve
for the optimal power allocation, yielding the jointly
optimal solution.

Note that due to the limitations of the Kronecker
model, the optimal transmit and receive beamformers are
not able to intelligently suppress the interference from
other users. This is not the case for the general Rayleigh
fading case, as is shown in the next section.

C. A Near-Optimal Solution for General Rayleigh Fad-
ing

The Kronecker model proved to be analytically
tractable, but the assumptions made by this model may
not be adequate for many multiuser setups–the trans-
mitter location will affect both the scatterers that are
used around both the receiver and transmitter in many
scenarios. Both receive and transmit beamforming for the
general Rayleigh fading case, however, are more difficult
to solve. As such, a suboptimal algorithm is considered
in this section, using bounds on the constraints to find the
optimal solution for the ratio of the average of the signal
to the average of the interference plus noise. Looking
at this framework allows use of modified versions of
previously developed techniques for algorithms utilizing
perfect channel knowledge. This work builds off of [7],
adapting their framework for the optimization problem
in (12).

1) Problem Setup: First, consider the bounds given
in [21],[22] for the outage probability, adapted to the
constraints in (12):

Lemma 4: Upper and lower bounds for
gl(γl,p,ul,V) are given by

1+γl

∑
i6=l clipi + 1

2σ
2
Nl

cllpl
≤ gl(γl,p,ul,V)

≤ exp

{
γl(
∑
i 6=l clipi + 1

2σ
2
Nl

)

cllpl

}
The proof is given in Appendix I. First, consider

using the expression for the upper bound instead of
gl(γl,p,ul,V) in the constraints of (12):

min
p≥0,ul,vl

wTp

s.t. exp

{
γl

∑
i 6=l clipi + 1

2σ
2
Nl

cllpl

}
≤ βl, l = 1, . . . , L

(28)

The solutions to the optimization problem in (28) will
yield feasible solutions to the problem in (12), since the
upper bound will never be less than gl(γl,p,ul,V). The
the constraint equations can then be rearranged to get

min
p≥0,U,V

wTp

s.t.
cllpl∑

i 6=l clipi + 1
2σ

2
Nl

≥ γl
log βl

, l = 1, . . . , L (29)

The lower bound can also be used for optimization.
Using Lemma 3, consider the optimization problem from
(13). Substituting in the lower bound from Lemma 4
for gl(γl,p,ul,V) in the constraint equations, after
some manipulation, results in the following optimization
problem:

max
p≥0,U,V

wTp

s.t.
cllpl∑

i6=l clipi + 1
2σ

2
Nl

≤ γl
βl − 1

, l = 1, . . . , L

This problem can also be stated as [7]

min
p≥0,U,V

wTp

s.t.
cllpl∑

i 6=l clipi + 1
2σ

2
Nl

≥ γl
βl − 1

, l = 1, . . . , L (30)

The solutions to the problem in (30) will not yield
strictly feasible solutions to (12), but Algorithm 1 can
be applied to the obtained solution to achieve a feasible
solution for (12).

In most networks, the outage probability thresholds
will be small to increase the likelihood that the links are
active. If the outage probability threshold αl is small,
then βl = (1−αl)−1 is larger than, but very close to 1.
Then, from the approximation log(1+x) ≈ x, it follows
that log βl ≈ βl − 1, or

γl
log βl

≈ γl
βl − 1

Thus, from (29) and (30), the upper and lower bounds
are tight for low outage probabilities.

Also, note that the optimization problems in (29) and
(30) take exactly the same form as the optimization
problems from [7] (only certain constants are different).
Thus all the techniques from this work can be applied
to solve for the powers and the transmit and receive
beamformers. Note that while the problems look similar
mathematically, the quantities in the problem presented
in [7] and the problem presented here vary significantly–
the problem in [7] utilizes CSI (thus, knowledge of
{Hli}), while the problem presented here utilizes CDI
(knowledge of {Σli}).
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2) Optimal Power Control and Beamforming for the
Bounded Problem: For now, consider the optimization
problem in (29). It can be shown that all the techniques
discussed here can also be used for the optimization
problem in (30). For notational convenience, first define

nl =
1

2
σ2
Nl

ψl =
γl

log βl

Ψl =
cllpl∑

i 6=l clipi + nl

Then (29) can be rewritten as

min
p≥0,U,V

wTp

s.t. Ψl ≥ψl, l = 1, . . . , L (31)

The optimization problem in (31) can be rewritten as a
linear programming problem [7]. First, define an L by L
diagonal matrix D, with elements Dll = cll

ψl
, and a L by

L matrix CI with cli as its elements on the off-diagonal
and 0’s along the diagonal. Using these two matrices,
also define A = D−CI . After some manipulation, the
problem in (31) can be rewritten as:

min
p≥0,U,V

wTp

s.t. Ap ≥ n (32)

The suboptimal solution will have a feasible solution
when D−1CI has a spectral radius less than 1 [7]. It can
be shown that if a feasible solution exists, the constraint
inequality in (32) is satisfied with equality, so p is given
as:

p = A−1n

Also, the receive beamformers can be solved in this
setup for fixed transmit beamformers and powers. To
minimize the objective function, Ψl, l = 1, . . . , L, should
be maximized for U. Doing this allows for p (specifi-
cally, pl for the lth constraint) to be minimized as much
as possible while meeting the constraints. Define

Φ
(n)
l = pl(v

∗
l ⊗ I)HΣll(v

∗
l ⊗ I)

Φ
(d)
l =

∑
i6=l

pi(v
∗
i ⊗ I)HΣli(v

∗
i ⊗ I) + nlI

The following L optimization problems can then be
written:

max
ul

Ψl =
cllpl∑

i6=l clipi + nl

=
pl(v

∗
l ⊗ ul)

HΣll(v
∗
l ⊗ ul)∑

i6=l pi(v
∗
i ⊗ ul)HΣli(v∗i ⊗ ul) + nl

=
uHl Φ

(n)
l ul

uHl Φ
(d)
l ul

, l = 1, . . . , L (33)

Note that Ψl is only dependent on the lth receive beam-
former, so the constraints can be optimized individually.
Here, the optimal U takes a slightly different form
than the optimal U in [7], where the optimal receive
beamformers are given by the MVDR beamformers.
In this problem, the above equation takes the form
of the dominant eigenvector for the generalized eigen-
value/eigenvector problem, which is well-studied [26].
Specifically, ul is the normalized vector that satisfies the
following equation for the largest possible λ:

Φ
(n)
l x = λΦ

(d)
l x

Now, focus on the transmit beamformers. The transmit
beamformers can be solved in an analogous fashion to
the receive beamformers for the dual optimization prob-
lem of (32). It can be shown that this dual optimization
problem can be formulated as

min
q≥0,U,V

nTq

s.t. ATq ≥ w (34)

Once again, using the same arguments as before, the
constraint inequality in (34) is satisfied with equality.
Thus, the solution to the optimum power allocation in
the dual domain is given by

q = A−Tw

Then, the optimal transmit beamformers can be solved
for by noticing that the lth constraint in dual problem
is only dependent on the lth transmit beamformer (all
else held constant), for fixed receive beamformers and a
fixed dual power vector q. Define for the dual problem

Φ̃
(n)
l = ql(I⊗ ul)

HΣll(I⊗ ul)

Φ̃
(d)
l =

∑
i 6=l

qi(I⊗ ui)
HΣli(I⊗ ui) + wlI

This problem is analogous to the receive beamformer
problem, so the transmit beamformers can be solved as
the principal generalized eigenvector for Φ̃

(n)
l and Φ̃

(d)
l .

From the above arguments, an algorithm for joint
power control and transmit/receive beamforming can be
derived:
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Algorithm 2: Joint Power Control and Beamform-
ing Algorithm

1) Initialize p ≥ 0 and V
2) Calculate the Φl’s and use them to calculate U
3) Calculate A, and then calculate q = A−Tw
4) In the dual domain, calculate the Φ̃l’s and use them

to calculate V
5) Calculate A, and then calculate p = A−1n
6) Repeat steps 2-5 until convergence.
This algorithm converges regardless of the initializa-

tion and will generate feasible solutions of decreasing
cost [7]. One way to initialize the algorithm is to ignore
interference and use the algorithms for point-to-point
communication given in section III.

After Algorithm 2 has converged, Algorithm 1 can
also be used to achieve the optimal power control scheme
for the beamformers produced by this algorithm. To
more closely approach the optimal solution, the follow-
ing algorithm can be used:

Algorithm 3: Extensive Joint Power Control and
Beamforming Algorithm

1) Initialize p ≥ 0 and V
2) Run Algorithm 2 on (29), and run Algorithm 1

on the result
3) Run Algorithm 2 on (30), and run Algorithm 1

on the result
4) Compare steps 2 and 3 and take the set of beam-

formers and power vectors for initialization in step
1

5) Repeat steps 1-4 until convergence.
While Algorithm 3 will always perform at least as well
as Algorithm 2 on its own, the results from the next
section show this algorithm only provides marginal im-
provement. Algorithm 2 requires less run-time, however,
since Algorithm 3 requires at least 2 runs of Algorithm
2. Algorithm 2 is also on the same order of complexity
as the CSI algorithm presented in [7]. However, since
CDI changes much less frequently than CSI, algorithms
based on CDI require less feedback and need to be run
much less frequently than their CSI counterparts.

V. RESULTS

A. Simulation Parameters

We conduct some numerical experiments to under-
stand the efficacy of the joint power control and beam-
forming algorithms developed above. Results are given
for a SU-MIMO setup and a MU-MIMO setup. For the
covariance matrices in both cases, an angular spread
model with 100 scatterers and varying transmit and re-
ceive angular spreads across the links is considered. The
signal links are centered at broadside with transmit and
receive angular spreads varying from 5 to 20 degrees,

and the interfering links are centered at incident angles
with transmit and receive angular spreads varying from
10 to 40 degrees. The parameters were selected with
respect to typical scenarios in the 3GPP model [27].
All transmitters and receivers have 4 antennas, and the
signal-to-noise ratio (SNR) is held constant at 10 dB.
Equal SINR thresholds and equal outage constraints is
considered for all users in the system.

For the MU-MIMO setup, a network with 3 trans-
mit/receive links and a weighting vector w = [10, 1, 1]T

is considered.

B. Single-User MIMO

In Experiment 1, the single-user MIMO case is con-
sidered. Here, an algorithm using perfect channel knowl-
edge is compared to the algorithm presented in Section
III, which uses the covariance information only. The
algorithm using perfect channel knowledge uses the
principal left and right singular vectors for receiver and
transmitter beamforming, respectively, and calculates
the minimum transmit power required to achieve the
threshold (this is an optimal scheme). The outage value
at which the average power required using CSI matches
the power required using CDI is a function of the inverse
of the expected dominant singular value of H, and can
be empirically calculated for a given covariance matrix.
See Fig. 1.

The plot yields some interesting results: the average
transmit power required for CDI is comparable to the
average power required for CSI for the same threshold,
with the value being lower at 20% outage. To calculate
the CDI powers, only the covariance information is
required, so it needs to be updated only when the
channel statistics change. On average, 2.5dB less power
is required to transmit using CDI at 20% outage as
compared to CSI. The tradeoff is that the covariance
algorithm will allow the link to fail with the specified
outage probability. However, this may be a desirable
tradeoff for many network applications since it prevents
the transmitter from attempting to increase the power
to compensate for poor channel conditions, thereby de-
creasing the interference to other nodes in the network.

C. Multi-User MIMO

For the multiuser case, the algorithm from [7] is used
to calculate the optimal transmit/receive beamformers
and powers at each channel instance (using perfect
channel knowledge). In Experiment 2, the average value
of the objective function using the weighting vector
above is compared against the suboptimal Algorithm 2
for varying outage constraints. See Fig. 2.

This experiment shows similar results to the single-
user case, except the solutions generated by Algorithm
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2 become infeasible (when the curves go to ∞). The
SINR thresholds here are reasonable, as many cellular
networks today are able to operate in the low SINR
regime [27]. The lower the outage, the lower the SINR
threshold has to be for the outage to become infeasible.
Once again, the value of the average objective function
is comparable to using true channel knowledge for low
enough SINR thresholds. This means that knowing only
covariance information, if the system is allowed to fall
into outage with some probability, transmission can be
performed on average with comparable power than with
knowing perfect channel information all the time. Using
Algorithm 2, there is about a 1dB savings in the average
cost function at an SINR threshold of -4dB at 20%
outage compared to the CSI scheme.

For more insight into the power consumption using
perfect channel knowledge and covariance information,
also observe the CDF of the weighted sum power for
true channel knowledge at an SINR threshold of 0
dB in Fig. 3. This plot shows what percent of the
time the objective function is larger for perfect channel
knowledge as compared to the outage curves. The outage
curves are just step functions, since for fixed covariance
information, they will always have the same value for
their objective function. Since the CDF curves for perfect
channel knowledge and 20% outage intersect at roughly
80%, the data shows that roughly 20% of the time,
using perfect channel knowledge, the objective function
is higher than Algorithm 2 for 20% outage. Also observe
that the median (where the CDF takes a value of 0.5)
is approximately -23 dB on the CDF plot. The mean
from Fig. 2, however, is at approximately -17 dB, a
difference of 6 dB, or a factor of about 4. The large
disparity between the median and the mean suggest
that the data for perfect channel knowledge is skewed
when the channel is bad. Thus, using Algorithm 2
significantly reduces the peak-to-average power ratio for
the transmitters (the peak-to-average power ratio is 1
using Algorithm 2 since the power allocation does not
change with the channel).

Experiment 3 shows the the difference between using
Algorithm 2 and Algorithm 3. See Fig. 4. The curves
show that the objective function is nearly identical with
and without optimal power control, and Algorithm 3
only begins to give any discernible gains when they
approach infeasible SINR thresholds. This is consistent
with the analysis of the tightness of the bounds in Section
IV-C.

Experiment 4 tests the convergence speed of Algo-
rithm 2. See Fig. 5. For the setup in the experiment, both
the outage values as well as the objective function values
converge within 5 iterations to their fixed point solutions.
This confirms that this algorithm is nearly identical

in computational complexity to the algorithm used for
perfect channel knowledge [7]. The big difference here,
however, is that Algorithm 2 needs to be run much
less frequently than the algorithm using perfect channel
knowledge.

VI. CONCLUSION

In this work, a framework has been presented for
analyzing MIMO beamforming networks when only the
channel statistics are known, and algorithms have been
derived that give good performance. Optimal algorithms
have also been presented for the single user MIMO case,
as well as for the multiuser MIMO Kronecker case.
A suboptimal algorithm using duality for joint power
control and beamforming for the general Rayleigh fading
case was also derived. While finding the optimal beam-
formers for this problem is an open area of research,
given the tightness of the bounds and the negligible
improvement of using the optimal power control algo-
rithm on top of the presented suboptimal algorithm, the
gains in finding the optimal beamformers will likely be
negligible for reasonable outage constraints.

When comparing the algorithms presented here to
algorithms where the channel is perfectly known, it
has been shown that using covariance information can
give gains in the cost function of interest. Thus, the
solution presented here has two substantial advantages:
the computational complexity for the algorithm and feed-
back information required for covariance information is
drastically reduced since both must be done only once
for valid covariance information, and transmission power
can be saved in the network if a sufficient level of
outage is acceptable on the links. Also note here that
the algorithms presented here can be extended to decen-
tralized algorithms as proposed in [7], among others, in a
straightforward manner, though this is still an open area
of research. Knowledge of covariance information has
many benefits, and it can be an effective way to reduce
feedback in MIMO networks.

APPENDIX I
PROOFS OF LEMMAS

Proof of Lemma 1: First, consider Z = uHHv.
Z is a linear combination of 0-mean complex circular
Gaussians, so Z is 0-mean complex circular Gaussian.
The next step is to find the variance. To do this, perform
the following calculations:
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var(Z) = E[Z · Z∗] = E[(uHHv)(uHHv)∗] (35)

= E[vec(uHHv)vec(uHHv)H ] (36)

= E[(vT ⊗ uH)vec(H)vec(H)H(v∗ ⊗ u)]
(37)

= (v∗ ⊗ u)HΣ(v∗ ⊗ u) (38)

The key observation here is that equality (36) follows
from observing that x = vec(x) if x is a scalar.
Furthermore, for scalars, the Hermitian and conjugate
operations are interchangeable. Equality (37) follows
from the property that vec(AXB) = (BT ⊗A)vec(X).
Finally, equality (38) follows from separating out the
deterministic factors from the expectation operator and
noting that by definition, E[vec(H)vec(H)H ] = Σ. This
gives an expression for var(Z).

The norm squared of a unit variance complex circular
Gaussian has a χ2

2, or exponential, distribution. Then
|Z|2, normalized by var(Z), gives

|Z|2

var(Z)
=

|uHHv|2

(v∗ ⊗ u)HΣ(v∗ ⊗ u)
∼ χ2

2

�

Proof of Lemma 2: First, use contradiction to prove
2). Note that gl(γl,p,ul,V) in (12) is a decreasing
function of pl. Now, assume that for the lth constraint,
gl(γl,p,ul,V) is strictly less than βl in the optimal
solution, and all the other inequalities are satisfied. This
means pl can be reduced appropriately to get equality
and reduce the value of the objective function. Further-
more, since gi(γi,p,ui,V) is an increasing function in
pi, i 6= l, when pl is reduced all of the other constraints
are still satisfied. Thus, having the lth constraint not
satisfy equality contradicts optimality, so all constraints
are satisfied with equality.

Also note here that if only the lth constraint holds with
strict inequality and the rest of the constraints hold with
equality, when pl is reduced, all of the other constraints
become inequalities (since gi(γi,p,ui,V) is an function
in pi, i 6= l). Thus, the rest of the pi’s, i 6= l, can be
reduced, which will lead to a further reduction of pl,
until a stable solution is reached that gives equality on
all the constraints.

Contradiction can also be used to prove 1). Assume
there exists two distinct optimal solutions that minimize
the cost function, p̂ and p∗. Then, define k and a such
that a = maxl p̂l/p

∗
l and k = argmax p̂l/p∗l . Since p̂

and p∗ are distinct and both minimize the cost function
(so wT p̂ = wTp∗), at least one element in p̂ is greater
than its corresponding element in p∗ (it also follows that
at least one element in p̂ is less than its corresponding
element in p∗). Therefore, a > 1. Then, using 2) from

this lemma, consider the kth constraint, satisfied with
equality:

βk = gk(γk,p
∗,uk,V) = e

γk
2

σ2Nk
ckkp

∗
k

∏
i 6=k

(
1 + γk

ckip
∗
i

ckkp∗k

)
(39)

> e
γk
2

σ2Nk
ckkp

∗
k
a
∏
i 6=k

(
1 + γk

ckip
∗
i

ckkp∗k

)
(40)

= e
γk
2

σ2Nk
ckkp

∗
k
a
∏
i 6=k

(
1 + γk

ckip
∗
i a

ckkp∗ka

)
(41)

= e
γk
2

σ2Nk
ckkp̂k

∏
i 6=k

(
1 + γk

ckip
∗
i a

ckkp̂k

)
(42)

≥ e
γk
2

σ2Nk
ckkp̂k

∏
i 6=k

(
1 + γk

ckip̂i
ckkp̂k

)
(43)

= gk(γk, p̂,uk,V) = βk (44)

The inequality in (42) comes from the fact that p∗i a ≥
p̂i for all i because of how a was selected, and that
gl(γl,p,ul,V) is an increasing function in pi, i 6= l.
Because of the inequality in (40), the above steps show
a contradiction, so p∗ must be unique.

There exists a unique solution for L equations, so
the constraints completely determine p∗, regardless of
w. Thus, 3) follows immediately from 1) and 2), which
concludes the proof.

�

Proof of Lemma 3: Similar arguments to the ones used
to prove Lemma 2 can be used for this lemma as well.
All the constraint equations will hold with equality by
the same argument as given previously, and the solution
is unique, being solely determined by the constraints.

�

Proof of Lemma 4: First, consider the lower bound.
A well-known bound is log(1 + x) ≤ x, or 1 + x ≤ ex.
Applying this bound results in

exp

{
γlσ

2
Nl

2cllpl

}
≥ 1 +

γlσ
2
Nl

2cllpl

Then consider

gl(γl,p,ul,V) = e
γl
2

σ2Nl
cllpl

∏
i6=l

(
1 + γl

clipi
cllpl

)

≥

(
1 +

γlσ
2
Nl

2cllpl

)∏
i6=l

(
1 + γl

clipi
cllpl

)
(45)
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The expression resulting in (45) can be expanded:

(
1 +

γlσ
2
Nl

2cllpl

)∏
i 6=l

(1 + γl
clipi
cllpl

)

≥

(
1 +

γlσ
2
Nl

2cllpl

)1 +
∑
i6=l

γl
clipi
cllpl

 (46)

= 1 +
γlσ

2
Nl

2cllpl
+
∑
i 6=l

γl
clipi
cllpl

+
γlσ

2
Nl

2cllpl

∑
i6=l

γl
clipi
cllpl

(47)

≥ 1 +
γlσ

2
Nl

2cllpl
+
∑
i 6=l

γl
clipi
cllpl

(48)

= 1 + γl

∑
i6=l clipi + 1

2σ
2
Nl

cllpl
(49)

In Eqn. (46), the inequality comes from expanding the
product on the left hand side of the equation and only
keeping the two terms shown (the terms excluded after
expanding are positive, resulting in the inequality). The
inequality in Eqn. (48) once again comes from excluding
a positive term in the sum. This gives the lower bound.

For the upper bound, once again consider the bound
1 + x ≤ ex. Applying this to the product terms gives

gl(γl,p,ul,V) = e
γl
2

σ2Nl
cllpl

∏
i6=l

(
1 + γl

clipi
cllpl

)

≤ e
γl
2

σ2Nl
cllpl

∏
i6=l

e
γl
clipi
cllpl

= exp

{
γl

∑
i 6=l clipi + 1

2σ
2
Nl

cllpl

}
This concludes the proof.

�

APPENDIX II
DERIVATION OF STANDARD INTERFERENCE

FUNCTION PROPERTIES

Standard interference functions were first defined in
[28]. In this work, the authors showed that this class of
functions can be used to do optimal power control, and it
has nice convergence properties. The definition is given
as follows:

Definition 1: An function F(p) is a standard interfer-
ence function if the following properties are satisfied:

1) Positivity: F(p) > 0
2) Monotonicity: If p ≥ p′, then F(p) ≥ F(p′)
3) Scalability: For all κ > 1, κF(p) > F(κp)
Theorem 2: Define

Il(p) =
γlσ

2
Nl

2cll log βl
+

pl
log βl

∑
i 6=l

log

(
1 + γl

clipi
cllpl

)
(50)

Then, the function I(p) = [I1(p), . . . , IL(p)] is a
standard interference function.

Proof: A similar function and proof is given in [22].
Start with the first property, positivity. This can be proved
by showing all the terms in Eqn. (50) are nonnegative,
and at least one of them is positive. γl and σ2

Nl
are > 0

by how they are defined. From the constraints, pl ≥ 0
(the power can never be negative). Also, the logarithm of
any number greater than 1 is positive. βl = (1− αl)−1,
and 0 < αl < 1, so βl > 1. Lastly, cli is positive since
cli = (v∗i ⊗ul)

HΣli(v
∗
i ⊗ul) ≥ 0 since Σli is a positive

semidefinite matrix. It is also safe to assume that ul and
vl will be selected such that cll > 0, since if cll = 0
the expression for outage probability becomes undefined.
Therefore, all the values in the first term of the sum in
(50) are strictly greater than 0 and the second term in
the sum is ≥ 0, so therefore I(p) > 0.

Monotonicity can be proved by showing
pl

log βl

∑
i 6=l log

(
1 + γl

clipi
cllpl

)
is monotonic in p

(since the other term in Eqn. (50) is a constant with
respect to p). First, focus on only one term in this sum,
since a sum of monotonically increasing functions will
also be monotonically increasing. Then, consider the
function

h(pl, pi) =
pl

log βl
log

(
1 + γl

clipi
cllpl

)
(51)

If pl is held constant, then h(pl, pi) is monotonically
increasing in pi, since c log(1 + kx) is monotonically
increasing for a fixed c > 0 and k > 0. If pi is now held
constant, h(pl, pi) takes the form

x log

(
1 +

k

x

)
= x(log(x+ k)− log(x)) (52)

The function h(pl, pi) is also monotonically increasing
in pl for k > 0 since Eqn. (52) always has a positive
derivative for x > 0. Therefore, I(p) is monotonically
increasing.

To prove scalability, consider a constant κ > 1. Then
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Il(κp) =
γlσ

2
Nl

2cll log βl
+

κpl
log βl

∑
i6=l

log

(
1 + γl

cliκpi
cllκpl

)

=
γlσ

2
Nl

2cll log βl
+ κ

pl
log βl

∑
i 6=l

log

(
1 + γl

clipi
cllpl

)

< κ
γlσ

2
Nl

2cll log βl
+ κ

pl
log βl

∑
i 6=l

log

(
1 + γl

clipi
cllpl

)
= κIl(p)

This concludes the proof.
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Fig. 1. Single User Case, SINR threshold vs Power

Fig. 2. Multiuser Case, SINR threshold vs Weighted Sum Power

Fig. 3. Multiuser Case, CDF of Weighted Sum Power



16

Fig. 4. Multiuser Case, Algorithm 2 vs Algorithm 3

Fig. 5. Multiuser Case, Algorithm 2 Convergence


